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Fig. 8. Analysis experiments: (a)–(b) Objective and variable differences between iterations with initialization w 0 (STMw ) and s0 (STMs ), respectively.
(c) Performance versus parameter choices. (d) Per-subject F1 score v.s. # training subjects. (e) Exemplar images of the GFT dataset [57].

convergence property of STM, we randomized 10 initialization
sets for STMw and STMs respectively. Upon the convergence
of STM, we computed their objective differences in consecutive
iterations (g(zt+1 ) � g(zt )), and the absolute sum of variable
difference (kzt +1 � zt k1). For the cases where STM took fewer
iterations to converge, we set the difference of later iterations to 0.

Fig. 8(a) shows the curve of mean and standard deviation of
differences across the iterations of STMw and STMs. Note that
the differences were scaled for visualization convenience. The
random initial value was reflected in the first iteration and made
a major difference with the value of the second iteration. One can
observe that in STMw and STMs, both the objective value and
difference between consecutive variables decreased at each step
and toward convergence, as theoretically detailed in Sec. 5. Note
that, although the resulting solution was slightly different due to
different initialization, the performance remains the same as both
converge to a critical point. We observed so by comparing the
confusion matrices during the experiments.

8.5.2 Parameter choice
Recall that training STM involves two parameters: C for the
tradeoff between maximal margin and training loss, and � for
the tradeoff between the SVM empirical risk and the domain
mismatch. This section examines the sensitivity of performance
with respect to different parameter choices. Specifically, we ran
the experiment of detecting AU12 on the CK+ dataset with the
parameters ranges C 2 f2 �10 ; :::; 210g and � 2 f2 �10 ; :::; 210g.
Following the experiment settings in Sec. 8.2, we used the leave-
one-subject-out protocol and computed an averaged F1 score for
evaluating the performance. We used Gaussian kernel with a fixed
bandwidth as the median distance between sample points.

Fig. 8(c) illustrates the contour plot of F1 score v.s. different
parameter pairs in terms of (log2(C); log2(�)). As can be ob-
served, the performance scatters evenly in most region of the plot,
showing that STM is robust to the parameter choices when their
values are reasonable. The performance decayed when both (C; � )
become extremely small (< 2�6 ), as shown in the bottom left of
the plot. This is not surprising because smaller values of C and
� imply less emphasis on training loss and personalization. Note
that with large enough �, STM does not need large C to achieve
comparable F1, providing an explanation that personalization
helps avoid imposing large C and hence avoid overfitting. As a
general guideline for choosing parameters, we suggest a small
value of C with a reasonable � (thus encouraging a large-margin
decision boundary with reasonable distribution mismatch).

We note that cross validation (CV) for domain adaptation
methods is difficult and remains an open research issue. As also
mentioned in [64], this issue becomes vital in a conventional

scenario where the number of training samples is much smaller
than the number of test samples. However, in our case, we always
have much more training samples than test samples, and thus, the
CV process is less biased under covariate shift. In addition, as
can be seen in Fig. 2 of [64], with proper � (kernel bandwidth)
and standard CV, KMM consistently reaches lower error than the
KL-divergence-based CV [64]. This serves as a justification for
KMM’s ability to estimate importance weights.

8.5.3 Domain size

The intuition for STM to work better in facial expression analysis
is a judicious selection of training samples. The availability of
richer diversity grants STM a broader knowledge to select bet-
ter candidates that match the test distribution. This experiment
examines performance changes w.r.t. diversities of the source
domain, for which we evaluated by the domain size or the number
of training subjects. Intuitively, the larger number of training
subjects, the more diverse the training domain is, and thus the
more likely STM could perform better. We compared STM to a
generic SVM (with cross-validation) to contrast the performance.

This experiment was performed on AU 12 using the RU-FACS
dataset. A subset from 3 to 27 training subjects was randomly
picked as a shrunk domain. The leave-one-subject-out protocol
and F1 score were used following Sec. 8.2. Fig. 9(a) illustrates
the effects of #training subjects on averaged F1 scores. For each
domain size, the mean and standard deviation were computed
on F1 scores over all test subjects. Test subjects without true
positives were ignored because their precision and F1 scores
were not computable. One can observe that, as #training subjects
grew, STM achieved higher F1 scores, and also performed more
consistently with lower standard deviation. This observation imi-
tates Sec. 8.3.2, where a source domain with poor diversity was
shown to limit STM’s performance. On the other hand, generic
classifier improved when #training subjects arose to 12. However,
with more training subjects being introduced, its performance was
slightly lowered due to the biases caused by individual differences.
Note that, because the training subjects were downsampled in
a randomized manner, it is possible that STM achieved better
performance on a domain with less training subjects.

As another justification, we examined the effects of domain
size on the GFT dataset [57], which contains a larger number
of subjects and more intensive facial expressions than RU-FACS.
The GFT dataset records videos of real-life social interactions
among three-person groups in less constrained contexts. Videos
were recorded using separate wall-mounted cameras facing each
subject; Fig. 8(e) shows exemplar frames. The videos include
moderate-to-large head rotations and frequent occlusions; facial
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movements are spontaneous and unscripted. We selected 50 videos
with around 3 minutes each (5400 frames).

Following the same procedure, we randomly picked a sub-
set of subjects varying from 4 to 49 as the shrunk domains.
Fig. 9(b) shows the F1 scores with respect to the number of
training subjects. One can observe the averaged F1 score increases
with #training subjects, although the standard deviation fluctuates.
To study the fluctuation, we broke down the averaged F1 into
individual subjects corresponding to different training sizes, as
shown in Fig. 8(d). Each row represents a test video; each column
represents one number of training subjects (ranging from 4 to 49).
Note that for subject 4 (the 4th row), there is no F1 score because
AU 12 was absent. One can observe that for 6 outlier subjects
(e.g., rows 19, 20, 39, 40, 47, 48), their F1 scores remained low
even as the number of subjects was increased. This result suggests
that these subjects share no or few instances in the feature space.
Visual inspection of their data was consistent with this hypothesis.
The outliers were ones with darker skin color, asymmetric smiles
or relatively large head pose variations. Thus, for these subjects
STM could offer no benefit. This finding suggests the need to
include greater heterogeneity in training subjects. When these
subjects were omitted, as shown in Fig. 9(c), the F1 scores are
markedly higher. The influence of the domain size becomes clear
and replicates Fig. 9(a). It is interesting to note that, for generic
classifiers, the performance increased until 24 training subjects
and then drops abruptly. This observation serves as another evi-
dence that individual differences (introduced by increasing number
of training subjects) could bias generic classifiers.

Between these two experiments, generally the averaged F1
score in GFT is higher than in RU-FACS. At least two factors
may have accounted for this difference. One is that participants in
GFT may have been less inhibited and more expressive. In RU-
FACS, subjects were motivated to convince an examiner of their
veridicality. They knew that they would be penalized if they were
not believed. In the three-person social interaction of GFT, there
were no such negative contingencies. Subjects may have felt more
relaxed and become more expressive. More intense AUs are more
easily detected. The other factor is that inter-observer reliability
of the ground truth FACS labels was likely much higher for GFT
than for RU-FACS. Kappa coefficients for GFT were exceptionally
good. While reliability for RU-FACS is not available, we know
from past confirmation-coding that inter-observer agreement was
not as high. Less error in the GFT ground truth would contribute
to more accurate classifier performance.

8.6 Discussion

In above experiments, we have evaluated STM against alter-
native methods in many scenarios: Within-subject (Sec. 8.3.1),
across-subject (Sec. 8.3.2), across-dataset (Sec. 8.3.3), and holistic
expression detection (Sec. 8.4). We also analyzed STM on its
initialization order, and sensitivity to parameters and domain size
(Sec. 8.5). STM consistently outperformed a generic SVM and
most transfer learning methods. The advantage of STM is clearest
in GFT, where the variety of subjects are more extensive, and
slightly so, in RU-FACS. The results indicate a more obvious
improvement in F1 than in AUC, in large complex datasets than
in posed datasets, in cross-dataset scenario than in within-dataset
scenario, and with more training subjects than with fewer ones.

STM has some limitations. For example, it suffers from the
lack of training subjects or crucial mismatch between training
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Fig. 9. Performance versus domain size: The averaged and standard
deviation of F1 score on (a) RU-FACS. (b) and (c) show the F1 scores
on the GFT dataset before and after removing the outlier subjects.

and test distributions, which are known as common drawbacks
in unsupervised domain adaptation methods. For a theoretical
analysis in terms of performance v.s. the number of samples,
Corollary 1.9 in KMM [29] reaches a transductive bound for an
estimated risk of a re-weighted task, given the assumptions of
linear loss and data being iid. However, it remains unclear how to
theoretically analyze STM’s performance in terms the number of
test samples, because STM involves nonlinear loss functions and
the data are from real-world videos (non-iid).

9 CONCLUSION AND FUTURE WORK

Based on the observation of individuals differences, this paper
proposed Selective Transfer Machine (STM) for personalized
facial expression analysis. We showed that STM translates to a
biconvex problem, and proposed an alternate algorithm with a
primal solution. In addition, we introduced L-STM, an extension
of STM that exhibited significant improvement when labeled test
data are available. Our results on both AU and holistic expression
detection suggested that STM is capable of improving test perfor-
mance by selecting training samples that form a close distribution
to a test one. Experiments using within-subject, cross-subject, and
cross-dataset scenarios revealed two insights: (1) Training data
matter unevenly for test data, and (2) extending the variety of
training subjects brings more value in improving performance.

It is worth noting that STM can be extended to other classifiers
with convex decision functions and losses, such as logistic regres-
sion. This is a direct outcome of Property 1 in Sec. 5.1. However,
for non-convex cases, such as random forest, local minimum
could cause worse performance. We leave extensions to non-
convex classifiers as a focus of future work. Moreover, improving
STM’s training speed could be another direction due to the QP for
solving s. Finally, while this study focuses evaluations on facial
expressions, STM could be applied to other fields where object-
specific issues are involved, e.g., object or activity recognition.
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